Mathematics Methods Unit 3

Binomial distribution

1.	Bernoulli trial				
	Bernuoli trial or binomial trial propeties (charactesristics):				
	 Each of the trials has only two outcomes: <u>success,p</u> or <u>failure,q</u> Trials are independent of each other (outcomes of previous trial has no influence the outcome of the following trial Trials are discrete random variable 				
	Bernuoli trial can be represented by:				
	p + q = 1				
	p: probability of success q: probability of failure				
2.	Bernuolli random variable				
	(a) Mean/ expected value				
	Formula: $\mu = p$				
	Derivation of formula:				
	$E(X) = \sum_{i=1}^{n} x \times P(X = x)$ = $P(X = 0) + P(X = 1)$				
	= p(1) + q(0) = p				
	Example 1: A bag contains two types of cards: black card and gold card. There are one gold card and three black cards. The random variable <i>x</i> is defined as the number of black card(s) drawn. There is only a chance in which the cards can be drawn. Determine the mean of the distribution.				
	Example 2: Given that $Z = 1$ when a jocker card is drawn while $Z = 0$ for all other cards drawn. Calculate the expected value of Z in a traditional deck of cards.				

(b) Variance

Formula:

 $\sigma^2 = pq$

Derivation of formula:

$$Var(X) = E(X^2) - [E(X)]^2$$

$$= p - p^2$$
$$= p(1-p)$$

= pq

$$E(X^{2}) = \sum_{x} x^{2} \times P(X = x)$$

= $x^{2} P(X = 1) + x^{2} P(X = 0)$
= $1^{2} P(X = 0) + 0^{2} P(X = 1)$
= p

 $[E(X)]^2 = p^2$

Example 1:

Calculate the variance of a distribution if the probability of success is 0.2 while the probability of failure is 0.8.

Example 2:

Based on the previous statistics, a school has 4% of students scoring straight A's in the year 11 examination. The school principal made a forecast that the forecast students obtaining straight A's is the same as the previous year.

Y = 1 is defined when a student falls under the straight A's category while Y = 0 is defined when a student falls under other categories other than straight A's. Find the variance of the distribution.

(c) Standard deviation

Formula:

$$\sigma = \sqrt{pq}$$

Derivation of formula: $Std(X) = \sqrt{Var(X)}$ $= \sqrt{pq}$

	Example:						
	The probability distribution of an event is shown in the table below:						
	<i>x</i>	0	1				
	P(X = x)	0.4	0.6				
	Find the standard deviation of the distribution.						
3.		Binomial distribution					
	Definition: Binomial distribution is a type of discrete random variable (specific), counting						
	the probability of an event over a fixed number of trials.						
	How binomial distribution is formed?						
	Repeated n number of						
	times						
		Bernoulli		Dinemial			
		distributio		Binomial distribution			
		distribution		distribution			
	Binomial distribu	ition can be deno	ted by:				
			ieu by.				
			$X \sim B(\eta$	n, p)			
	a, number of tric	la / rapatition					
	n: number of tria						
	p: probability of success						
	Pinamial distribution proportion (characteristics):						
	Binomial distribution properties (characteristics):						
	 Has only two outcomes (success, p or failure, q) Brobability is constant for success and failure 						
	 Probability is constant for success and failure It is repeated for a number of times (trials 						
	It is repeated for a number of times/ trials Trials						
	Trials are independent of one and another						
	(a) Probability						
		icy					
	Parameters						
	$X \sim B(n, p)$						
	<i>n</i> : number of repitition						
	<i>p</i> : probability of success						
	Formula						
	$P(X=r) = {}^{n}C_{r}p^{r}q^{n-r}$						
	Where:						
	X: discrete random variable in a binomial distribution						
	n: number of trial						
	r: number of success						
	n-r: number of failure						
	p: probability of success						
	<i>q</i> : probability of failure						

Example 1: Given that $X \sim B(8, 0.5)$, find:			
P(X > 2)			
$P(X \le 2)$			
$P(X \le 5 X \ge 1)$			

Example 2:

In a survey, 20% of the students likes mathematics. If a random sample of 4 students are choosen, find the probability that two of them like mathematics.

Example 3:

Azri is salesman. It is known that the probability of getting a potential customer in sales is 0.05. What is the least number of calls that must be made to ensure that the probability of making at least 2 sales is more than 90%?

Example 4: A random variable is binomially distributed. It's variance is 2 while mean is 6. Find P(X = 3).

(b) Mean

Formula:

 $\mu = np$

Derivation of formula:

$$E(X) = \sum_{n} x \times P(X = x)$$

=
$$\sum_{x=0}^{n} x \times P(X = x)$$

=
$$\sum_{x=0}^{n} x \times {}^{n}C_{r}p^{r}q^{n-r}$$

=
$$\sum_{x=0}^{n} x \times \frac{n!}{x!(n-x)!} \times p^{x}(1-p)^{n-x}$$

=
$$\sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} \times p^{x}(1-p)^{n-x}$$

Let
$$R = x - 1 \& m = n - 1$$
,

$$= \sum_{R=0}^{m} \frac{(m+1)!}{R! (m-R)!} \times p^{R+1} (1-p)^{m-R}$$

$$= (m+1)p \sum_{R=0}^{m} \frac{m!}{R! (m-R)!} \times p^{R} (1-p)^{m-R}$$

$$= np * \sum_{R=0}^{m} \frac{m!}{R! (m-R)!} \times p^{R} (1-p)^{m-R}$$

= np(1)= np

*Binomial theorem,

$$(a+b)^m = \sum_{R=0}^m \frac{m!}{R! (m-R)!} \times a^R(b)^{m-R}$$

Let
$$a = p$$
, $b = 1 - p$

$$\sum_{R=0}^{m} \frac{m!}{R! (m-R)!} \times p^{R} (1-p)^{m-R} = \sum_{R=0}^{m} \frac{m!}{R! (m-R)!} \times a^{R} (b)^{m-R}$$

$$= (a+b)^{m}$$

$$= (p+1-p)^{m}$$

$$= 1^{m}$$

$$= 1$$

Example 1:

Kobauro Ltd. predicts that out of the monthly production batch of motherboards, 2% are defective due to various reasons. Find the expected number of defective motherboards in a sample of 400 motherboards.

Example 2: X is a discrete random variable such that $X \sim B(n, p)$. If the value of q = 0.1 and the variance is 34, find the mean of distribution. (c) Variance Formula: $\sigma^2 = npq$ Derivation of formula: $\sigma^{2} = E(X^{2}) - [E(X)]^{2}$ = $E(X^{2}) - E(X) + E(X) - [E(X)]^{2}$ $= E[x(x-1)] + E(X) - [E(X)]^{2}$ = * n(n-1)p² + np - n²p² = n²p² - np² + np - n²p² $=-np^{2}+np$ = np(1-p)Since q = 1 - p, = npq* $E[x(x-1)] = \sum_{x=2}^{n} \frac{n!}{(x-2)!(n-x)!} \times p^{x}(1-p)^{n-x}$ Let R = x - 2 & m = n - 2, $= n(n-1) \sum_{R=0}^{m} \frac{m!}{R! (m-R)!} \times p^{R+2} (1-p)^{m-R}$ $= n(n-1) p^2 \sum_{R=0}^{m} \frac{m!}{R! (m-R)!} \times p^R (1-p)^{m-R}$ $= n(n-1)p^2(p+1-p)^m$ $= n(n-1)p^{2}$ Example 1:

Michael who sells "economy rice" predicts that out of the daily dish cooked, 26% are left unsold. Find the variance of the leftover dishes at the end of the day if Michael cooks 25 dishes that day.

Example 2:

Kaishan throws a biased die 20 times and the number of 2's seen is 8 times. Find the variance for the appearance of the number, 2.

(d) Standard deviation

Formula:

$$\sigma = \sqrt{npq}$$

Derivation of formula: (same as of variance)

$$\sigma^2 = npq \\ = \sqrt{npq}$$

Example 1:

Given that $X \sim B(n, p)$ and the value of q = 0.9 while n = 5. Calculate the standard deviation.

Example 2: Suppose that a fair coin is flipped 30 times. Calculate the standard deviation.

END